Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(26): 17103-17112, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34250367

RESUMO

Novel highly stereoselective syntheses of (+)-streptol and (-)-1-epi-streptol starting from naturally abundant (-)-shikimic acid were described in this article. (-)-Shikimic acid was first converted to the common key intermediate by 11 steps in 40% yield. It was then converted to (+)-streptol by three steps in 72% yield, and it was also converted to (-)-1-epi-streptol by one step in 90% yield. In summary, (+)-streptol and (-)-1-epi-streptol were synthesized from (-)-shikimic acid by 14 and 12 steps in 29 and 36% overall yields, respectively.

2.
RSC Adv ; 11(47): 29702-29710, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479555

RESUMO

A mild, efficient and eco-friendly method for the oxidation of 1-Bn-DHIQs to 1-Bz-DHIQs without concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs is very important for the syntheses of 1-Bz-DHIQ alkaloids and analogues. In this article, we developed a novel Cu(ii)-catalyzed and acid-promoted highly regioselective oxidation of tautomerizable C(sp3)-H bonds adjacent to the C-1 positions of various 1-Bn-DHIQs. It was observed that when 0.2 equiv. of Cu(OAc)2·2H2O was used as the catalyst, 3.0 equiv. of AcOH was used as the additive and air (O2) was used as a clean oxidant, various 1-Bn-DHIQs could be efficiently oxidized to corresponding 1-Bz-DHIQs at 25 °C in DMSO. Especially, almost no concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs was observed during the above reaction. In addition, this method was successfully applied in the first total synthesis of the alkaloid canelillinoxine.

3.
ACS Omega ; 5(4): 1813-1821, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039317

RESUMO

Efficient and highly stereoselective syntheses of (+)-proto-quercitol and (-)-gala-quercitol starting from the naturally abundant (-)-shikimic acid were described in this article. (-)-Shikimic acid was first converted to the key intermediate by eight steps in 53% yield. It was then converted to (+)-proto-quercitol by three steps in 78% yield and was also converted to (-)-gala-quercitol by five steps in 63% yield. In summary, (+)-proto-quercitol and (-)-gala-quercitol were synthesized from (-)-shikimic acid by 11 and 13 steps in 41 and 33% overall yields, respectively.

4.
RSC Adv ; 9(72): 42077-42084, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-35542836

RESUMO

N-Octyl-ß-valienamine (NOV) 1 and N-octyl-4-epi-ß-valienamine (NOEV) 2 are potent chemical chaperone drug candidates for the therapy of lysosomal storage disorders. Novel stereoselective syntheses of NOV 1 and NOEV 2 starting from naturally abundant (-)-shikimic acid are described in this article. The common key intermediate compound 5 was first synthesized from readily available (-)-shikimic acid via 9 steps in 50% yield. Compound 5 was then converted to NOV 1via 5 steps in 61% yield, and it was also converted to NOEV 2via 8 steps in 38% yield. In summary, NOV 1 was synthesized via 14 steps in 31% overall yield; and NOEV 2 was synthesized via 17 steps in 19% overall yield.

5.
ACS Omega ; 3(7): 8243-8252, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458961

RESUMO

A green chemical method for mild oxidation of 1,2,3,4-tetrahydroisoquinolines (THIQs) and 3,4-dihydroisoquinolines (DHIQs) has been developed using air (O2) as a clean oxidant. DHIQs and THIQs could be efficiently oxidized to isoquinolines in dimethyl sulfoxide at 25 °C under an open air atmosphere with CuBr2 (20 mol %) as the catalyst; different bases [NaOEt and/or 1,8-diazabicyclo[5,4,0]undec-7-ene] were used for the reaction according to the patterns of substituents (R1, R2).

6.
Science ; 358(6365): 933-936, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28971967

RESUMO

Zika virus (ZIKV) has evolved into a global health threat because of its unexpected causal link to microcephaly. Phylogenetic analysis reveals that contemporary epidemic strains have accumulated multiple substitutions from their Asian ancestor. Here we show that a single serine-to-asparagine substitution [Ser139→Asn139 (S139N)] in the viral polyprotein substantially increased ZIKV infectivity in both human and mouse neural progenitor cells (NPCs) and led to more severe microcephaly in the mouse fetus, as well as higher mortality rates in neonatal mice. Evolutionary analysis indicates that the S139N substitution arose before the 2013 outbreak in French Polynesia and has been stably maintained during subsequent spread to the Americas. This functional adaption makes ZIKV more virulent to human NPCs, thus contributing to the increased incidence of microcephaly in recent ZIKV epidemics.


Assuntos
Microcefalia/virologia , Proteínas do Envelope Viral/genética , Infecção por Zika virus/virologia , Zika virus/genética , Zika virus/patogenicidade , América/epidemiologia , Substituição de Aminoácidos , Animais , Asparagina/genética , Linhagem Celular Tumoral , Cricetinae , Surtos de Doenças , Humanos , Incidência , Camundongos , Microcefalia/epidemiologia , Mutação , Células-Tronco Neurais/virologia , Polinésia/epidemiologia , Serina/genética , Infecção por Zika virus/complicações , Infecção por Zika virus/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...